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PRODUCT INTEGRALS 
OF CONTINUOUS RESOLVENTS" 

EXISTENCE AND NONEXISTENCE 

BY 

M. A. FREEDMAN 

ABSTRACT 

Let {[I-  )tA (t)] ~:0 _-< A _-< A,0 =< t _-< T} be a family of resolvents of bounded 
linear m-dissipative operators A(t) on a Banach space X. Suppose that the 
map(A,t,x ~[l-AA(t)]-~x is jointly continuous. Then we show it is not 
necessarily true that for each x ~X: ( l )  the product integral 
lim.~l]7 ~[l-(t/n)A(it/n)] ~x exists, (2) the initial value problem y'(t) = 
A(t)y(t), y(0)= x has a strong solution. 

I. Introduction 

Consider  the evolut ion equat ion  

(1.1) dy _ d t - A ( t ) y ,  O<-t<-_T, with given initial value y (0) 

where  for each t, A(t)  is an ope ra to r  on a Banach space (X,[I-][) and y is 

X-valued.  In the study of this equat ion,  it is cus tomary to impose on A sufficient 

spatial and temporal  hypotheses  so as to ensure the existence of a solution y. 

Spatial hypotheses  encompass  the notions of continuity (e.g. boundedness ,  

compactness ,  closedness or Lipschitz cont inui ty of the ope ra to r  A (t)), positivity 

(e.g. each A (t) is positive, selfadjoint ,  m o n o t o n e  or  accretive) and linearity (e.g. 

A(t)  is a linear, semilinear,  quasil inear or nonl inear  operator) .  On  the o ther  

hand,  temporal  hypotheses  may  be categorized according to condit ions put  

directly on A ( - )  itself or condit ions imposed on its resolvent ,  L ( t )  = 

[ I -  h A  (t)] -1. Condi t ions on A itself are general ly easy to verify, for  example ,  

continuity of A (-). Resolvent  type condit ions,  though usually more  difficult to 

check,  are useful for  applications in the areas of functional  and partial  

differential equations.  
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We shall consider the well-known Crandall-Pazy resolvent conditions which 

suppose that a family of nonlinear operators A (t) on X satisfies for some real 

number co, 

(i) /5 = D o m ( A  (t)) is independent of t, 

(ii) Dom (J, (t)) _D E) f o r 0 < = t ~ T  and a l l 0 < A < A ,  where c o A < l ,  

(iii) each J~(t) is a Lipschitz mapping with (J~(t))L,o<= ( 1 -  Aco)-', 

(iv) there exist a continuous function [ : [0 ,  T]----~ X and an increasing function 

L such that 

ItJ~ (t)x - J~ (s)x l[ <= A ]If(t) - / ( s ) [ I  Z(l[ x ]l) 

f o r 0 < h < A ,  O<s, t<=T and x E / 5 .  

Crandall and Pazy in [1] prove that these conditions imply the existence of the 

product integral 

- [ I  def n 
(1.2) J~(~)x = lim l-IJ, l , ( i t /n)x for all x E E), t E [ 0 ,  T] 

0 n ~  i = l  

and that this product integral provides the strong solution y( t )  = H~Jdr to 

(1.1) whenever such a solution exists. In turn, the solution to the "abstract" 

ordinary differential equation (1.1) can provide the solution to a concrete partial 

differential equation. The key is to view (1.1) as a partial differential equation by 

specially choosing X to be a function space acted on by a particular partial 

differential operator A (t). This is illustrated in [1] by way of a nonautonomous 

nonlinear partial differential equation, shown to have a unique solution. 

Likewise in [5] and [14] general nonautonomous functional differential equa- 

tions are analyzed and solved by choosing suitable X and A in (1.1) so that 
conditions (i)-(iv) are satisfied. 

Evans in [7], Pierre in [11] and Webb and Badii in [14] all work with variants 

of the Crandall-Pazy conditions. In particular, each assumes conditions similar 

or identical to (i), (ii) and (iii) and substitutes a variant of (iv), in order to prove 

existence of (1.2) or some type of solution to (1.1). We too shall single out 

condition (iv) for replacement. After all, as shown by the Hille-Yosida theorem, 

at least in the linear autonomous case, a version of conditions (i), (ii), and (iii) is 

not only sufficient but also necessary for the existence of (1.2). It is the 

nonautonomous condition (iv) which seems somewhat unnatural and which we 
investigate. 

An essential feature of (iv) is that the time dependence of A (t) is uniform with 
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respect to the space variable x. Martin [9], Dollard and Friedman [3] and 

Schechter [12], [13] break away from any assumption of uniform time depen- 

dence but assume as a trade-off that A is continuous in its spatial variable. In 
Sections 2, 3 and 4, we too shall investigate questions of existence of (1.2) when 

(iv) is replaced by temporal hypotheses not uniform in the space variable. 
In Section 4 it is shown that the Crandail-Pazy conditions, while sufficient, are 

not necessary for the existence of (1.2). Specifically, we exhibit a family 
{A (t)}o=,=T of bounded linear operators which satisfies conditions (i), (ii) and (iii) 

but not (iv) or any variant of (iv) and for which the product integral (1.2) exists. 

In contrast to this example, our investigations in Section 3 will demonstrate that 

existence of (1.2) does not necessarily follow when (iv) is weakened to 

(iv)' J, (t) is a strongly continuous function of the ordered pair (A, t ) E  [0 ,~)x 

[0, T], 

even if (i), (ii) and (iii) are replaced by the simpler and stronger hypotheses 

(i)' each A (t) is a bounded linear operator with Dom(A (t))=-X, 

(ii)' Dom(J~ (t)) -= X, and 

(iii)' (L(t))Lip= < 1 and all t and h. 

To begin, we first examine a case of existence of the product integral. 

2. Product integrals of Lipschitz continuous resoivents 

Given a Banach space (X, [[. []), let Lip (X) denote the set of Lipschitz operators 
T defined on all of X. Thus for each T E Lip(X), the Lipschitz seminorm of T: 

<Z)Lip : sup [I Zx - r y  II 
x.,~x [ [x -y l [  ' 
x~y 

is finite. We shall consider Lip (X) as a Banach space, which is the case under the 

Lipschitz norm given by 

II T[lLip : II T(0)[I + ( T)L~p. 

THEOREM 2.1. Let {A (t)}o~,_~, be a family of Lipschitz operators on X satisfy- 

ing: t ~ A ( t )x is continuous on 0 <= t <= r for every x E X, and ( A ( t ))L~p < M for 

O <= t <-_ T. Then, 

(i) the initial value problem (1.1) has a unique classical solution y(t), 

(ii) the product integral II'oJae(~)x as defined by (1.2) exists for every x E X, 

0 < t <_ T and it equals y(t). 
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PROOF. Clearly, continuity in t for  each fixed x and the Lipschitz condit ion 

imply that A is jointly cont inuous on the strip [0, T] • X. Hence  A satisfies the 

hypotheses  of the Picard existence theorem for ordinary differential equat ions  

(cf. [8, p. 322]), and this theorem yields the solution we seek in (i). 

As for the proof  of (ii), given t E (0, T],  let{ti}i'=,, be the part i t ion of [0, t] with 

t, = it~n, i = 0 , 1 , . . . , n .  Now if x E X and y is the solution of ( l . l ) w i t h  the initial 

condit ion y ( 0 ) =  x, then y satisfies 

f, (2.3) y(ti) = y(t~_,) + A ( s ) y ( s ) d s ,  i = 1 , . . . , n .  

Letting P~ = I - ( t ~  - t ,_ , )A( t~)  and y, = y(t~), (2.3) can be writ ten as 

f' (2.4) P,y~ = y,_,+6~ where 6~ = A ( s ) y ( s ) d s - ( t ~ - t ,  , ) A ( t , ) y ( t , ) .  
i I 

Next define the sequence of vectors z,~ = x, and for i ~ 1 : z~ = P,~ z~_,, where we 

assume that n is large enough so that II(t,-t,-3n(t,)L~<l. There fo re ,  if 

~, = I l y , -  z, tt and tx~ = max{1,(P, ' )up} then f rom (2.4): 

,~, = II P,' (P,y,)-  P;'(P,z,)II 

(2.5) --< (P,-')~,,II y, , -  z,_, + 8, II 

~,( ,~,- ,  + 118, II). 

Now, for each i, multiply both sides of (2.5) by II;'=~../z. and then sum over  i for 

1 =< i ~ n. Since a,, = 0, it follows that for  n => 2tM, 

o,. --- ~,  118,11--- ~, S'.118,11----e2'~'.118,11, 
i = i  j = l  i = t  i = 1  

where we have used the bounds /xj < I / ( 1 -  tM/n)<= 1 + 2 t M / n  < e 2,M~". 

For each i we have 

118, II = (y ' ( s ) -  y'(t,))ds 

Since y ' ( s )  is continuous,  given e > 0 there  exists n,, such that for  all n >= no, 

I1r ee 2'M (t~-t~ ,)/t. Hence ,  for  all such n, 

t A it -' ~,M (t, t ,- ,)/ t  e. y ( t ) - , = ,  I - n  \ n ]  x = a , , = < e -  ,=,~ee -2'M - = 
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Therefore,  l-l~,Jde(s~)x exists and equals y(t) for all t E [0, T]. 

Throughout  the remainder  of this section, assume that A : [0, T] x X ~ X is 
an arbitrary nonlinear operator  with resolvent J, (t) which satisfies: 

(2.1) J, ( t )E  Lip (X) for each (A, t) in the rectangle [0, A] • [0, T], 

(2.2) CA, t ) ~  L (t) is a continuous map from [0,A] • [0, T] into Lip (X). 

LEMMA 2.1. For each t E [ 0 ,  T], A ( t )  is a Lipschitz operator on X, and 

M =- sup,e~,,.q(A (t))Lip is finite. 

PROOF. Since J, ,(t)= I and J is continuous, there exists /.t > 0  such that 
( I - J , , ( t ) ) u p < 0 . 5  for all t E [0, T]. It follows (cf. [10, p. 66]) that for each t, 
J,,' (t) exists in Lip (X) and satisfies (J,,' (t))L~p _-< 1/(1 - (I - J,~ (t))L~p). Therefore,  

1{ , }=3 �9 
(A (t))up <= 1 +1 - ( I - J . ( t ) ) u p  ~" 

{t.}:=,C[O,T] and t.--+t,,, then, for all x E X. LEMMA 2.2. I f  

A (t .)x ~ A (to)X. 

PROOF. Let /z be such that ( I -  J~(to))Lip < 1. Hence J~'(to) E Lip(X).  The 
proof is completed by identifying J~(to) with F and J~ ( to ) - J , ( t . )  with (3. in 

Lemma 2.3 below. 

LEMMA 2.3. Suppose F E Lip(X) has inverse F -~ in Lip(X) and {(3.}.=, is a 

sequence in Lip(X) with IIG. ItL,o---'O as n---,o~. Then eventually F - G .  has 

inverse in Lip(X) and l i m . ~ ( F -  G.) -J (x )=  F-~(x) for each x E X. 

PROOF. Eventually II G. Ik,. < II F- '  II~)p, which implies that (F - G. )  ' exists in 
Lip(X)  [10, p. 66]. Taking this to be the case, given x E X let z.  = ( F -  (3.) ' (x)  

and z = F-~(x). Then 

Ilz. - z II <= l ie  ' ILJ  F C z . ) -  FCz)ll = liE-' ILpll G.(z.) l l  

=< II F- '  Ik,~ (ll G. (z . )  - O. (z)11 + II O. (z) - O.  (0)II + II G.  (0)II) 

~ ll F -  ' llLid G.  ILo (ll z.  - z l l + l l z l l + 0 .  

which implies that 

< I1 t :- '  IIL,pll _o. IIL,p(II z II + 1) 
{ I z . - z  = 1-1t:-IIL,plIG-IIL,~ " 

Applying Lemmas 2.1 and 2.2 to Theorem 2.1 now yields 
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THEOREM 2.2. I r A  has resolvent which satisfies conditions (2.1) and (2.2), the 

product integral l]~J~(~)x exists for every x E X and t ~ [0, T]. 

REMARKS. (1) Though A( t )  is not assumed to be dissipative, contained in 

condition (2.2) is the strong assumption that for each fixed t, lim, ,,,111, ( t ) -  IIIL,o -- 
0. While this assumption may limit the scope of Theorem 2.2, we have included 

this theorem mainly to put into sharper focus the nonexistence results presented 

in Section 3 where Lipschitz continuity is weakened to strong continuity. 

(2) If each A (t) is additionally assumed to be a linear operator on X, it can be 

shown that the product integral l-l[jJdr converges in the operator-norm 

topology for every t in [0, T]. 

3. Counterexample 

We shall exhibit a family of operators {A(t)}o~_,~_~ on a Banach space X 

satisfying 

(3.1) for each t E [0,1], A ( t )  is a bounded linear operator 

defined on all of X, 

(3.2) for each t E [0,1], A (t) is m-dissipative (i.e. conditions (ii)' 

and (iii)' of Section 1 are satisfied), 

(3.3) J, (t)x = [1 - AA (t)] -t x is a jointly continuous function of 

the triple (A, t, x) ~ [0, ac) • [0, 1] • X, 

and such that: 

PROPOSITION 3.1. 

t E (0,1]. 

PROPOSITION 3.2. 

There is a w E X such that 1-l~Jd~(~)w does not exist[or any 

There is a y(0 )E  X such that the initial value problem (1.1) 
has no strong solution for any T > O. 

As a consequence of these propositions, it is clear that the following two 
statements: 

for every XoE X, there is at least one t E (0,1] for which the 

product integral II'o Jd~ ( ~ )xo exists, 

for every y(0) E X, there exists T > 0 such that the initial value 

problem (1.1) has a strong solution y (t), 

are false. 
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By a strong solution to the initial value problem (1.1) with initial value x, is 

meant a function y: [0 ,  T ] ~ X  such that 

(1) y is continuous on [0, T] and y ( 0 ) =  x, 

(2) y is absolutely continuous on compact subsets of (0, T), 

(3) y is differentiable a.e. on (0, T) and satisfies (1.1) a.e. 

The continuity condition (3.3) is equivalent to separate continuity in A, t and x 

of the map (A, t, x ) ~  J~ (t)x when a satisfies (3.1), (3.2)and II A (t)H, the operator 

norm of A (t), is bounded. However,  this case is of no interest with respect to the 

preceding propositions, for it implies that for fixed x and t, each A (t)x is the 

uniform limit as n---~ oo of the t-continuous Yosida approximants n(Jj~, (t)x - x ) .  

Hence A (t) is strongly continuous, so, as follows from Theorem 2.1, the product 

integral (1.2) exists. In general, though, for A with II A (t)][ unbounded on [0,1], 

condition (3.3) is stronger than separate continuity. 

In the construction of the counterexample, we first define the l)-norm of a 

sequence x = (xt, x2 , . - . )  of elements drawn from (= as 

0,x,-   and 

Our counterexample will be set in the space 

do~{ } 
ll = (x,)T=l: x, ~ ~ ,  lim II x, = 0 and I(x,), In < ~ �9 

LEMMA 3.1. (~, I" [a) is a Banach space. 

PROOF. Clearly I" la is a norm on the space of sequences of elements drawn 
from ~ Now consider the space Z = {(x~)L~ : xi E ~ and I (x~)i In < ~}. The proof 

that Z is complete under the l l-norm follows the same steps as the ordinary 

proof of the completeness of ~ .  But f~ is a closed subspace of Z, as is clear from 

the inequality 

(3.4) ][x~ II=--<lx In for every index k applied to any x = (xi)~_-i in n .  

Therefore, 1~ is itself a complete normed linear space. 

The next lemma shows that fl contains a vector having components which 

might usually be associated with a divergent series. 

LEMMA 3.2. There exists w = (w~, wz, w3,"  ") E I I  which satisfies 

U FI I1,  II 1 (3.5) ~ wj 1 and w~ 2' ~ = for infinitely many choices of M and N. 
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PROOF. Let ek = (0 , . - . ,0 ,1 ,0 , - . . )  be the vector with 1 in the kth component 

and O's elsewhere. Let wl = el. If n and j are positive integers with 2 "-t < j =< T, 
we define 

(3.6) wj = ~ (e, + e.+l). 2 -  

Hence 

and 

/2" 2 "-1 
w , : ~  ~ ) ( - I f ( e .  

j=2n-l+l 
+ e.+l) = ( -  1)" (e. + e,+l), 

j=2n-l+l 

Therefore, 

]=1 k=l j=2k-l+l 

= ( -  1)"e.+l, 

1 2- (_21). ( 
wj = 2j-=2 ~'-- +1 wj = e. + e.+ 0 . 

wj = el - (el + e2) + (e2 + e3) . . . .  + ( -  1)" (e, + e,+l) 

and 

(3/4)2- 2--t ~ ~ n+l 
.~ w i = . j ~ w i +  ( e , + e , + 0 =  2 (e - e , ) .  

Thus 

1 I1,  --1, II'   ,11o2 
DEFINITIONS 3.1. (1) Let 9-(0 denote the function whose graph is the 

triangular spike with vertices at ( - 1 , 0 ) ,  (0,1) and (1,0). Thus 

{0, if It l=>l; 
~r(t) = l _ l t l ,  if Itl_-<l. 

(2) For each p = 1,2, . . .  , l e tap( t )=  -2P*25r(2P+2t-3). 

(3) For each t E (0,1] and x E f~ define A (t) to be the diagonal operator given 
by A ( t ) x  = (ap(t)x~)~=l, and l e t A ( 0 ) =  0. 

REMARKS 3.1. (1) We see that each ap is a downward triangular spike, and 

the a~'s have nonoverlapping supports. Hence, given x = (xp)~=l, 

A (t)x = (0,. O, a~ (t)xp, 0 , . . .  ), when t E [2 -(p§176 2-P]. 
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(2) Keep  in mind that Xp and ap(t)Xp are themselves e lements  of & ,  not 
scalars. 

(3) Observe  that each ap satisfies: if 0 < t < 1 and p => iog2(1/t) then 

~o ' ap(s)ds - a~ (or) = 0 for all = 1 and t_ -o r= l .<  < 

(4) The  idea of constructing a function, like A, as a sequence  of projec t ion  

opera tors  of increasing norms appears  in a similar construct ion in Dieudonn6 ' s  

paper  [2]. 

LEMMA 3.3. The operators { A (t)}o_~,<__l are bounded, linear m-dissipative on 12 
and satisfy (3.3). 

PROOF. R e m a r k  1 above  shows that each A (t) is bounded ,  linear, and that 

for  each x E ll ,  

J,(t)x = (xl,x2,...,(1 - Aap(t)) -* xp, xp§ when t E [2-(P§ 

To prove m-dissipativeness, we will need  the inequality: For  any 0 E [0,1] and 

Zl, Z2 E ta~, 

II z, § Oz2 -- II (1 - 0) z l + 0 (zt + z2)I1~ --< (1 - 0)ll z~ II| + 0 tl z, + z2 II~ 

=< max(If z,ll ,ll Zl + z211 ). 

Hence ,  if A > 0, t E [2-(~+',2-P] and x E 12, then for any finite set F C_ {1,2,3, . . .}  

with p Z F, we have 

max{l l ,Xx,  l :  ~x ,  + OxplI| <= max { ,~x, | l,~,x, + xpl | =< lx ]n. 

Therefore ,  for 0 = 1/(1 - )tap(t)), 

I J, (t)x In = sup{max{ll,~Fx, 1| I ~ x +  Oxpll| } is finite and p f f  F} 

---- Ix I,,. 

Finally, we verify (3.3). In the case 0 < t _-< 1, (3.3) follows easily f rom the 

continuity of A(t). W e  leave the details to the reader.  For  t = 0, let{tp} be any 

sequence  which approaches  zero and such that tp E [2-(~+1),2-P], p = 1 , 2 , . . . .  

Then  for x, y E l l  and A, /x => 0, we have J~ (0)x = x and 

[ JA (0)x - L ( t p ) y  In= < Ix - y In+ IL(tp)Y - y In 

-- Ix - y I.  + II ([1 - / z i p  (re)]-1 _ 1) Ye 

--< Ix - y ],+llypl]~, 
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which approaches 0 as (p., tp, y) approaches (h,0,x). �9 

We shall require one more preliminary lemma in order to complete the 

counterexample. 

LEMMA 3.4. Given x E I'L if 1-1[,J~(~)x exists, it must equal 
(exp (f'o ap (s )dx )xp )~=, . 

PROOF. Let yp =exp(f'oap(s)ds)xp. Then, since ap is continuous, it easily 

follows (cf. [4, p. 52]) that yp = limn~=l-l~[1- (t/n)ap(it/n)] 'xp. 
r _ ( j )  I ~  Suppose III, Js~(~)x equals the vector (z,);=~, where for each p, zp = / zp  /j=, 

and xp = {x~}~=~. Then for each pair of indices ~ and J ,  inequality (3.4) yields: 

0 =  lim l-IJ,,n(it/n)x-(zp);=~ 
n ~  i = 1 n 

p(n = lira [1 - (t/n)ap(it/n)l-lx~ - zp 
n ~  i=I p=l {l 

>=l imsupsup l . f [ [1 - ( t / n )ap ( i t / n ) ] - ' x~ ) - z~ '  I 

Therefore, yp = Zp for every index p, and the proof is complete. 

PROOF OF PROPOSITION 3.1. With w taken from Lemma 3.2 and given 

t E (0,1], consider 

Aq(t) = [ I - ( t / q ) A ( i t / q ) ]  ' w -  exp ap(s)ds wp 
i = l  p = l  I I  

= I(g(p, q)  I., 

where we define g(p,q)=II~=,[l-( t /q)ap(i t /q)]  ' -exp( fhap(s)ds) .  By the 

previous lemma, it will suffice to show that Aq(t) is bounded away from zero for 

all q. Remarks 3.1 give that 

g(p, q) = 1 - 1/e for all integers p and q such that p >-_ log2(q/t). 

Therefore, for each positive integer q, Lemma 3.2 shows there exist integers 

M > N > log2(q/t) such that 
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The  proof  is finished. 
t There  is a more  general  definit ion of the product  integral IloJd~(s For  each 

e > 0 there  exists a part i t ion T of [0, t] such that  if {~,}7=1 is any part i t ion of [0, t] 

which includes ~" (i.e. o" is a ref inement  of i") then 

. . . .  (o- ,)w 
0 i = I ~ 

This leads to 

COROLLARY 3.1. With A and w as in Proposition 3.1, the product integral 
l-l~)Jd~(~)w does not exist even if convergence of the product integral is taken in the 
sense of successive refinements of partitions described above. 

PROOF. It will suffice to show that given 0 < t <_- 1, if T is a part i t ion of the 

interval [0, t], there  is a ref inement  tr = {o-~}?~0 of ~- such that 

A~. (t) de' ({~=[1-((r,-~,_l)ap(cr,)]-~-exp(Io'ap(s)ds)}wp);=,l n 

clef 

= I(g(p,~r)wp);=,[,>-�89 - l / e ) .  

In fact, let (r equal r itself, where  ~- is given by: 0 = To < r~ < ' ' "  < rm = t. NOW 

set ~ equal to a positive integer  which satisfies. 2 -~' =< ~',. Then ,  by Lemma  3.2 

there  exist integers M > N > ~ such that 

PROOF O~ PROPOSrnON 3.2. Let A be as in Definitions 3.1. We first show that 

for  X = O, if y ( t )  is a strong solution to ( I . I )  and y ( 0 ) =  (xp)~=,. then 

y(t)=(exp(fo'ap(s)ds)x~)i= 1 for  all t ~ [0,1]. (3.7) 

On [0,1], suppose y ( t ) =  (yp(t))~=,, where  for each p, y p ( t ) =  {yo~ Then  

for each pair of indices 9 and ~ :  

O=liml(Ye( t+h)-ye( t ) -ap( t )y , ( t ) ) i  [ 
h ~ l l  h = 1 1~ 

>__limsupsuplY~)(t+h)-Y~)(t'-ap(t)y~) H 
h ~ ( }  p ~ l  j ~ l  h 

�9 (~)/t + h ) -  (~ [ > lim "Y~ ~ y~, ( t ) _  a~(t)y~(t)  almost everywhere .  
I 
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Hence, for almost all t E(0,1), ,,(~""" = a:~(t )yJ ' ( t )  and y!J)(0) = x(J~(()) 

Furthermore, it is immediately clear from inequality (3.4)'that y(t)  absolutely 

continuous on compact subsets of (0,1) implies the same for the coordinate 

function yll~)(t). Therefore ~ - ' y:,. ( t ) - e x p ( f , , a ~ ( s ) d s ) x ' r  [0, I], and (3.7) 

follows. 

Now consider the case where y(0) equals the vector w from Lemma 3.2. To 

complete the proof, it will suffice to show that as t--~0, y(t)  does not converge to 

w. Let{hq}~=~ be a sequence of numbers such that lim,_~h, =(), hq => I/2 q and 

y'(hq) = A(hq)y(hq) .  Then, by Remarks 3.1 and Lemma 3.2, for each positive 

integer q there exist positive integers M > N > q such that 

= [(" . ,(e- '  - 1)wq,(e-"- 1)w,+,,(e ~ ' -  1)wq+2...)[,, 

>=(1-e- ' ) l (wq,  wq+,,wq+2,...)[,, 

M 

= � 8 9  

It is possible to find a function/:[0,1]---~ X and an increasing function L such 

that the inequality in condition (iv) of Section 1 is satisfied for the operators A (t) 

of Definitions 3.1. Let L equal the identity function and define f(0) = 0, and for 

t > 0 and in the support of a~, let f ( t )  = (2ap(t)ep, O,O,...). Hence, if t E supp (ap) 

and s E supp(aq) with p #  q, then for all A => 0 and x E 1) we have 

IJ~(t)x - J ~ ( s ) x  In = A I J , ( t ) [ A ( t ) - A ( s ) ] J ~ ( s ) x  ],, 

< A I a ( t ) x  - a ( s ) x  1, 

<-_ A max{fa,(t)[llx~ II=,faq(s)fllxq ]l=,lla~(t)xe - aq(s)xq rl~} 

=<2A max{[ap(t )[ , laq(s) l} lx  In 

= ,~ I [ ( t ) - f ( s ) l . L ( I x  I.). 

The case p = q  is handled similarly. 

Observe that f ( t )  is continuous on the interval [0,1] everywhere except at 

t = 0. Therefore, except for this one point of discontinuity, the family {A (t)}o=~,~l 
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of the counterexample would satisfy the Crandall-Pazy conditions (i) through 

(iv). But it is precisely this one discontinuity point which prevents the product 

integral (1.2) from converging. It is even true that f is not integrable on [0,1]. In 

fact, if f is any vector-valued function containing 0 in its domain and such that 

for some increasing function L : 

(3.8) [J~(t)x - J~(s)x in<= A I f ( t ) -  f(s)[aL(Ix [a) 

for all A => 0, x E ~,  and almost all s and t in [0,1], then f cannot be integrable. 

To see this, define u tN~ to be the unit vector (e,,e2,'",eN, O,O,'") and let 

AN = 1/2 N§ and s = 0. Then (3.8) implies for every positive integer N :  

L~I) (t)A(t)u'N'[a+ If(0)l~ 

f21/2 I2 2-p _,,,~) IJ~,~(t)A(t)u(N)lndt = ,.., IJ~( t )A(t )utN)l ,dt  p=l -~(P§ ~) 

(3.10) 2. lae(t)l dt >=~ -,p+,, 
= p=~ -,p+l, ] - ANap(t) l ap(t)l  dt = 2N/3,  

where we have used the bound: 1/(1--ANap(t))>--~ for all l_-<p_-<N and 

0 =< t =< 1. Combining (3.9) and (3.10) gives 

[o ~ 1 f,/2 (3.11) If(t)ladt ==- N-~ L(1) J 2 - , - + , , l i m  - -  lJ~,,A(t)u'mladt 4-[f(0)la = + ~  

Thus f is not integrable on [0,1]. 

Evans [61, [7] gives conditions for the existence of the product integral which 

are the same as (i)-(iv) except that conditions (iii) and (iv) need only be true for 

almost every s, t E [0, T[ and for some integrable f. (See remark 10.2 of [6].) In 
[6], [71 under these more general conditions, the product integral is shown to 

exist in the following sense. For every t E(0,  T] there exists a sequence of 

partitions r ~") = (r~"))~'~) of [0, t[ with mesh sizes approaching zero such that for 

all xo E / ) ,  
N(n) 

lim 1-I J,, ~~ '"' (~'~')Xo 

exists. As shown above, the operators A (t) of the counterexample do not satisfy 

the Evans conditions. Thus it is no surprise that the product integral II~ J,~ (~:)w 

of the counterexample does not exist in the Evans sense just described. This can 

be seen from the proof of CoroUary 3.1. 

(3.9) 

NOW, 
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The next section illustrates that even with f ( t)  not integrable on [0,1], the 

product integral may exist. 

4. Example 

The purpose of this section is to exhibit a family of operators A( t )  on a 

Banach space X which satisfies conditions (i), (ii) and (iii), but which does not 

satisfy the inequality in (iv) for any integrable vector-valued function f, and for 

which the product integral (1.2) exists for every x U X. This will then serve to 

categorize the Crandall-Pazy and Evans conditions as sufficient but not neces- 

sary for the existence of the product integral. We first remark that if A is any 

operator-norm continuous map from [0, T] into the bounded linear operators on 

a Banach space X, then while A may not satisfy condition (iv) for any 

vector-valued function f, it will satisfy (iv) for f( t)  operator-valued and equal to 

A (t). In this case, (1.2) will exist as follows from elementary arguments (cf. [4, 

pp. 6, 80]) or as follows by the Crandall-Pazy convergence arguments in [1] 

which work equally well for f vector-valued or operator-valued. 

Consider now {A (t)}0~,~l equal to the family of diagonal operators given in 

Definitions 3.1., except that each A (t) has domain co = {{x~}~=l E s = 

0}, instead of the space i~. Verification of properties (i)', (ii)' and (iii)' of Section 1 

is trivial and left to the reader. Furthermore, we claim that for each x = 

{xp}~=l ~ co, the product integral (1.2) exists and equals {exp(f 'oap(s)ds)xp}~. 
That is, 

lqim ~= [ I - ( t / q ) A ( i t / q ) ] - ~ x - { e x p ( f o ' a , ( s ) d x ) x p } i = l  ~ 
(4.1) 

= lim sup Ig(p,q)x~[ = O, 
q ~  p=>l 

where, as in Proposition 3.1, 

(I0 g(p,q)= 1"~[1 -( t /q)ap(i t /q)]  -1 - e x p  ap(s)ds . 

The limit in (4.1) easily follows since: for each fixed p, l imq~ g(p, q) = 0 (see [4, 

p. 52]); ]g(p, q)l_- < 2 for all p and q; and xp ~ 0 as p ~ ~. Finally, we argue that 

the inequality of condition (iv) cannot be satisfied for this example for any 

vector- or operator-valued function ]' which is integrable on [0,1]. This can be 

seen by letting v (N~= e~ + e2 + ' . - +  e~, so that each v (N~ is a unit vector in co. 

Next, in inequalities (3.8) through (3.11) substitute v (~ for u (N~ and replace the 

~-norm with the ~'~ norm. The argument then follows. 
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We mention that Crandall and Pazy in [1] provide an alternate condition in 

place of condition (iv). This was subsequently generalized by Evans [6], [7] as 

follows: 

(v) There exist a measurable function f : [0, T] ~ X of bounded variation and 

an increasing function L such that for 0 < A < A, almost all 0 < s -<_ t =< T and 
X ~ / ) :  

IlJ~(t)x - J~(s)x t] <= A II f( t )- f(s) l lL(l lx  II){1 + IIm(s)J~(s)x II). 

It can be shown that every statement made in this paper with respect to 

condition (iv) remains valid if we replace (iv) by condition (v). 

5. Questions about separability 

The space 1~ contains a copy of tg~ in each of its coordinate spaces; hence it is 

not separable. However,  choosing coordinate spaces all equal to ~ in ~ was 

done as a matter of simplicity. We could have defined a family of spaces 

l), = { (x')T=l :x' ~ ~p, limHx' llp = O and [(x~)' la <~176 } I <= P <= ~" 

Then all of the results and proofs of Section 3 would remain true if for any 

p ~ [1,~], the space 12 were replaced by l~p. Furthermore, even though lq, is a 

proper subspace of l) for p < ~, we have 

PROPOSITION 5.1. Each space II e, 1 <-_ p <= 0% is nonseparable. 

PROOF. It will suffice to find an uncountable family ~ of vectors in 12p such 

that I u - v In => 1 for all u, v E ~. Given a real number r E [0,1], suppose that r 

has binary expansion r = .  rlr2" �9  where r, ~ {0, 1}. Define v (r~ as the vector in 

lIp with components 

v~ r~=r~wi fo r2  ~-~<j-<_2 ~, n = 1 , 2 , . . . ,  

where the vector wi is given by equation (3.6). Now let ~ = {v('): r ~ [0,1]}. Then 

given u, v E ~, for some index n we have 

l u - v t ~  = I ( ' ' ' , w 2  o '+~,w2~ '+2 , ' ' ' ,w~o, ' ' ' ) l~-  ->1 ~ w'l =1" II 
j=2n-l+l 

As seen from the proof of Proposition 5.1, nonseparability of 12p and existence 

of the vector w in Lemma 3.2 are closely related results. As such, nonseparabil- 

ity is an essential ingredient in the counterexample of Section 3. We might well 

ask if it would be possible to construct a counterexample for Propositions 3.1 and 

3.2 in a separable Banach space. Alternatively, we pose the 
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CONJECTURE. Given A which satisfies conditions (3.1), (3.2) and (3.3) on an 

infinite dimensional space X with special properties, for example, X = L 2, the 

product integral (1,2) exists for every t ~ [0,1] and x E X. 

It may also be of interest to investigate whether the product integral of the 

counterexample exists in a weak sense. More generally, we ask, if for any A 

which satisfies conditions (3.1), (3.2) and (3.3) on an arbitrary Banach space, does 
the product integral of resolvents converge weakly? 
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